If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-10t-45=0
a = 5; b = -10; c = -45;
Δ = b2-4ac
Δ = -102-4·5·(-45)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{10}}{2*5}=\frac{10-10\sqrt{10}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{10}}{2*5}=\frac{10+10\sqrt{10}}{10} $
| 4x+3x-2=8+2x | | 20x+5=7+14x | | x^2-7x=-9x-2 | | x^2+22x+28=12x | | 55c=358 | | 25x(4x+6)=-65 | | X^2+(4x^2)=360 | | 3x²-363=0 | | x-2+x5+13=x1+x1+x+x | | 25=x6/10 | | 1.22+a=2.22 | | 5x+1=6x-x | | X+3+3x+2+2x+3=180 | | 4.49-4.39=a | | 20=-4-17t | | 23x30=x3x10 | | 10+x+7+2x-8=180 | | 5x−12=3x2 | | 2(x+x6)=108 | | x2–10x+41=0 | | x^2–10x+41=0 | | 3a^2-16a+5=1 | | -43+5m=-47 | | 80+60(x-1)=620 | | X+7+3x+5+9-x=180 | | 7.4k-0.7=4.2k+6.7 | | -8+2r=-10 | | 2π-x^2=0 | | -15=8x-21-5x | | 7a+6=3a-4 | | 7+4x+6x-2=-11-2x+2+5x | | 5c-10=-3c+7 |